您要查找的是不是:
- As well as Pythagoras theorem and Fermat's last theorem summarizes the total. 也是对毕达哥拉斯定理和费尔马最后定理的总概括。
- In fact the theory required is known as Pythagoras' Theorem and involves the use of squares and square roots. 实际上需要的是毕达哥拉斯的定理,并且使用了平方是平方根。
- Pythagoras is my friend in these days. 毕达哥拉斯是我的朋友在这些日子。
- Let us restate the assertions above as a theorem. 我们把上述的断言重新表述为一个定理。
- They also demonstrated knowledge of the Pythagorean theorem well before Pythagoras, as evidenced by this tablet translated by Dennis Ramsey and dating to c. 1900 BC. 他们在毕达哥拉斯之前,也证明了毕达哥拉斯定理。证据就在由丹尼斯拉姆齐破译的一块公元前1900年的石版。
- In ancient Greece, young Pythagoras discovers a special number pattern (the Pythagorean theorem) and uses it to solve problems involving right triangles. 图书性质:全价/非现货图书(想了解什么是非现货图书,请点击这里)
- More recently, Jagadguru Swami Sri Bharati Krishna Tirthaji Maharaja in his book Vedic Mathematics claimed ancient Indian Hindu Vedic proofs for the Pythagoras Theorem. 在吠陀数学一书中声称古代印度教吠陀证明了毕达哥拉斯定理。
- The second proof of Theorem 26 is due to James. 定理26的第二个证明属于詹姆斯。
- Theorem g is called binomial theorem. 定理g称为二项式定理。
- This completes the proof of the convexity theorem. 这就完成了凸定理的证明。
- This calculation illustrates the theorem. 这个计算说明了这样一个定理。
- We call this principle a rule and not a theorem. 我们称这个法则为原理而不称为定理。
- We have thus arrived at the very important theorem. 这样我们就得了一条很重要的法则。
- The theorem may be explained as follows. 这条原理可以这样来阐述。
- This method helps to obtain a remarkable theorem. 这一方法有助于得出一著名的定理。
- His theorem can be translated into simple terms. 他的定理可用更简单的术语来解释。
- Theorem 2 ABd method is absolutely stable. 定理4 PAEI方法在M‘/2范数意义下是绝对稳定的.
- The main results are theorem 5 anc theorem 9 . 主要结果是定理5和定理9,宅是文[4]的继续。
- This is the "Kos theorem" Wu edition. 这是 “科斯定理”的张五常版。
- Poynting's Theorem and the Poynting Vector S. 波印廷定理及波印廷向量S。